102 research outputs found

    A Kalman Based Hybrid Precoding for Multi-User Millimeter Wave MIMO Systems

    Get PDF
    Millimeter-wave communication in the 60-GHz band requires large antenna arrays at both the transmit and receive terminals to achieve beamforming gains, in order to counteract the high pathloss. Fully digital techniques are infeasible with large antenna arrays due to hardware constraints at such frequencies, while purely analog solutions suffer severe performance limitations. Hybrid analog/digital beamforming is a promising solution, especially, when extended to a multi-user scenario. This paper conveys three main contributions: 1) a Kalman-based formulation for hybrid analog/digital precoding in multi-user environment is proposed; 2) an analytical expression of the error between the transmitted and estimated data is formulated, so that the Kalman algorithm at the base station does not require information on the estimated data at the mobile stations, and instead, relies only on the precoding/combining matrix; and 3) an iterative solution is designed for the hybrid precoding scheme with affordable complexity. Simulation results confirm significant improvement of the proposed approach in terms of both bit error rate and spectral efficiency–achieving almost 7 b/s/Hz, at 20 dB with 10 channel paths with respect to the analog-only beamsteering, and almost 1 b/s/Hz with respect to the hybrid minimum mean square error precoding under the same conditions

    Origin of Ferroelectricity in Orthorhombic LuFeO3_3

    Full text link
    We demonstrate that small but finite ferroelectric polarization (\sim0.01 μ\muC/cm2^2) emerges in orthorhombic LuFeO3_3 (PnmaPnma) at TNT_N (\sim600 K) because of commensurate (k = 0) and collinear magnetic structure. The synchrotron x-ray and neutron diffraction data suggest that the polarization could originate from enhanced bond covalency together with subtle contribution from lattice. The theoretical calculations indicate enhancement of bond covalency as well as the possibility of structural transition to the polar Pna21Pna2_1 phase below TNT_N. The Pna21Pna2_1 phase, in fact, is found to be energetically favorable below TNT_N in orthorhombic LuFeO3_3 (albeitalbeit with very small energy difference) than in isostructural and nonferroelectric LaFeO3_3 or NdFeO3_3. Application of electric field induces finite piezostriction in LuFeO3_3 via electrostriction resulting in clear domain contrast images in piezoresponse force microscopy.Comment: 12 pages, 8 figure

    The potential utility of B cell-directed biologic therapy in autoimmune diseases

    Get PDF
    Increasing awareness of the importance of aberrant B cell regulation in autoimmunity has driven the clinical development of novel B cell-directed biologic therapies with the potential to treat a range of autoimmune disorders. The first of these drugs—rituximab, a chimeric monoclonal antibody against the B cell-specific surface marker CD20—was recently approved for treating rheumatoid arthritis in patients with an inadequate response to other biologic therapies. The aim of this review is to discuss the potential use of rituximab in the management of other autoimmune disorders. Results from early phase clinical trials indicate that rituximab may provide clinical benefit in systemic lupus erythematosus, Sjögren’s syndrome, vasculitis, and thrombocytopenic purpura. Numerous case reports and several small pilot studies have also been published reporting the use of rituximab in conditions such as myositis, antiphospholipid syndrome, Still’s disease, and multiple sclerosis. In general, the results from these preliminary studies encourage further testing of rituximab therapy in formalized clinical trials. Based on results published to date, it is concluded that rituximab, together with other B cell-directed therapies currently under clinical development, is likely to provide an important new treatment option for a number of these difficult-to-treat autoimmune disorders

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore